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Abstract

Modi®cations in the rate of evaporation of a drop due to its surface deformation are investigated using numerical

simulations based on a Galerkin ®nite element method. It is ®rst shown that, for a drop at its boiling temperature and

surrounded by a gas at a uniform temperature (far from the drop surface), the liquid and the gas phases may be studied

separately, provided a large density ratio. In this paper the results of the gas phase are presented. The surface of the

drop is deformed using various spherical modes up to the eighth with amplitudes as large as 70% of the radius of the

spherical drop. The mass transfer number is also varied from 0.1 to 2. The results show that the rate of evaporation

increases with the increase of the amplitude of the surface deformation and varies signi®cantly along the surface of the

drop. A model has been extracted from the numerical results, which expresses the mass ¯ux as a function of the surface

curvature. The model is valid for surface amplitudes up to 10% of the drop radius. Ó 2001 Elsevier Science Ltd. All

rights reserved.

1. Introduction

With the growing interest in analytical treatments of

two-phase turbulent ¯ows in recent years, there has been

an associated increasing demand for analytical/empirical

correlations describing the interphase transfer of mass,

momentum, and energy [1±4]. As a result, a great deal of

e�ort (e.g., [5±9]) has been devoted to numerically sim-

ulate the ¯ow around a single (or a small ensemble of)

drop(s). While previous studies have been very success-

ful in providing new insights into the interactions be-

tween the two phases, they have been mostly concerned

with ``spherical'' drops. However, a large number of

two-phase systems involve liquid drops which undergo

signi®cant shape deformations while interacting with the

carrier phase. The drop deformation could have signif-

icant e�ects on interphase transfer phenomenon, thus

resulting in some modi®cations in the existing correla-

tions.

Previous studies of deforming/evaporating drops are

limited in both extent and scope of the contributions.

This is, understandably, due to complexities involved in

numerical modeling and detailed laboratory measure-

ments of various phenomena present in the problem.

From a numerical point of view, the main di�culty

arises from the presence of a continuously evolving

interface that is very closely coupled to the dynamics of

the drop. One of the early studies is by Deng et al. [10]

later reviewed by Jeng and Deng [11]. In this work, a

two-dimensional numerical model has been developed

for investigating the dynamics of nonevaporating and

evaporating long cylindrical drops undergoing defor-

mation/breakup, and oscillations under viscous con-

vective ¯ows. The results show that the dynamics of the

drop deformation is basically una�ected by vaporiza-

tion, however, the evaporation rates (per unit area) are

greater for deformed drops. Haywood et al. [12,13]

perform numerical simulations of both statically de-

formed and oscillating, axisymmetric evaporating drops

exposed to a convective ¯ow ®eld. The numerical

model is based on the ®nite volume method, using

a nonorthogonal adaptive grid. Computations of

the steady state evaporation of n-heptane droplets in
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high-temperature air show deformed oblate shapes with

major axes perpendicular to the mean ¯ow direction.

Using the numerical result, Haywood et al. [12] pro-

pose a new correlation for the drag coe�cient of

(steady) deformed vaporizing drops. Oscillating drops

are strongly damped at frequencies within 25% of the

theoretical natural frequency of Lamb [14]. Haywood

et al. [13] show that circulation inside the drop is re-

sponsible for the strong damping and promotes the

formation of prolate shapes for drops.

While these previous studies have been helpful in

unraveling several interesting phenomena, they are

mainly concerned with the evolution of a drop in a

combustor environment where strong convective ®elds

tend to dominate the drop dynamics. The main objective

of the present study is to investigate ``free'' oscillations

of evaporating drops and the modi®cations of the rate of

evaporation associated with such oscillations. We will

consider both evaporation of deformed drops and os-

cillations of evaporating drops. While each of these

subjects may be considered as a separate study on its

own rights, a simultaneous analysis of the two is im-

perative in order to realistically address the issue of mass

transfer from the surface of a deformed drop.

The results of our investigation are presented in two

papers: Part I (the present paper) and Part II [15]. We

consider the evaporation of a drop surrounded by a gas

which is at a uniform temperature far from the surface

of the drop. The preheat period is not considered and

the drop is assumed to be at the liquid boiling tem-

perature. With these assumptions we are able to inves-

tigate the e�ects of all of the parameters involved in the

problem while a wide range for the variation of each

parameter is considered. In Part I, after presenting the

general formulation, it is shown that under these con-

ditions and for a large density ratio, the gas phase and

the liquid phase may be studied separately. The coupling

of the two phases is through an evaporation model

which is derived from the study of the gas phase in Part

I. In Part II, this model is implemented to study free

oscillations of evaporating drops using both numerical

and theoretical approaches. A discussion of the e�ects of

oscillations on the rate of evaporation is also presented

in Part II. In Section 2, we present the formulation and

elaborate on the (de)coupling of the two phases. In

Section 3, the results of the gas phase are discussed

followed by conclusions in Section 4.

2. Formulation

The main objective of this work is to study the dy-

namics of an evaporating and oscillating drop sur-

rounded by a gas at a temperature T1 in zero gravity

(Fig. 1). Since we are considering interactions of the gas

with only one single drop, it can be assumed that the

Nomenclature

B Cpg�T1 ÿ Tb�=Lv transfer number

Cp speci®c heat

Fn �3n� 2�=2�n�n� 1� � 2�
h spine function

H outside radius of the computational domain

for the gas phase

k thermal conductivity coe�cient

K drop surface curvature

Lv latent heat of evaporation

_m mass ¯ux
_M rate of total evaporated mass

n mode of oscillation

n outward unit normal vector

Ni shape function

p pressure

Pn Legendre polynomial of degree n

Prg qgmgCpg=kg gas Prandtl number

r radial (cylindrical) coordinate

r0 initial radius of the nonperturbed drop

Rn volume correction factor

Re` �1=m`��rr0=q`�1=2
liquid Reynolds number

t time

T temperature

w �u; v� velocity vector

z axial coordinate

Greek symbols

b nondimensional rate of evaporation

�n surface disturbance amplitude for mode n

h nondimensional gas temperature

m kinematic viscosity

q density

r surface tension coe�cient

s stress tensor

! parameter in penalty function formulation

/ inclination angle from the drop axis

v nondimensional mass ¯ux

w �vÿ vsp�=vsp

Subscripts

b boiling condition

g gas

` liquid

s drop surface

sp spherical drop

1 gas condition far from the drop surface

Symbol

. nondimensional radius of the spherical drop
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total heat capacity of the gas much larger than that of

the liquid and T1, far from the drop surface, is constant.

Assuming that both the liquid and the gas are incom-

pressible with constant properties, the conservation

equations for mass, momentum, and energy are de-

scribed as

r � wa � 0; �2:1�

owa

ot
� wa � rwa � ÿ 1

qa

rpa � mar2wa; �2:2�

oTa

ot
� wa � rTa � ka

qaCpa
r2Ta; a � `; g; �2:3�

where ` and g stand for liquid and gas, respectively.

For a liquid drop evaporating with a mass ¯ux _m, the

jump condition and the normal stress balance on the

interface are, respectively, described as [16,17]

_m � q`�w` ÿ ws� � n � qg�wg ÿ ws� � n; �2:4�

_m�wg ÿ w`� � n� �n � �sg ÿ s`�� � n� rr � n � 0; �2:5�

where s is the stress tensor including the pressure com-

ponent. The ®rst term on the left-hand side of (2.5) is the

so-called ``recoil force'' which is a result of the change in

the momentum of the liquid during vaporization. In this

study, we assume that the drop is at the liquid boiling

temperature, Tb. In many problems the transient heating

period does not signi®cantly a�ect the droplet lifetime,

and more rigorous calculations for spherical drops show

that the droplet surface temperature is only slightly less

than the liquid boiling point in combustion environ-

ments. This assumption eliminates the need to solve the

energy equation in the liquid phase as well as the need

to solve the vapor transport (species) equation ([18],

p. 309). This also eliminates the possibility for formation

of thermocapillary ¯ows due to the variations of surface

tension with temperature. With this assumption, the

energy received by the drop is consumed for phase

change only, and the following equation can be stated

for the balance of energy at the surface of the drop:

_mLv � kgrTg � n: �2:6�
The governing equations of the two phases are cou-

pled through the interface relations (2.4)±(2.6) and must

be solved simultaneously. However, we show in the

following that the coupling of the two phases can be

removed for the cases considered in this study ± note

that this decoupling must be applicable to oscillating

drops. The starting point is to eliminate ws in (2.4) to

obtain

�wg ÿ w`� � n � _m
qg

1

�
ÿ qg

q`

�
: �2:7�

We then simplify (2.5) by noting that the ¯uid pressure

a�ects the oscillations of the drop through its ¯uctuating

component which is proportional to the ¯uid's density

(see e.g., [14] for nonevaporating drops). In this study,

we consider qg � q`, therefore, the e�ects of the ¯uc-

tuations in the ambient gas pressure may be neglected in

comparison to the e�ects of the pressure ¯uctuations in

the liquid. Further, the mean pressure of the gas a�ects

only the mean pressure of the drop and, for incom-

pressible liquid, does not in¯uence the oscillations of the

drop ± in Part II we show that the e�ect of the ambient

gas pressure on the period of oscillations of an inviscid,

evaporating drop is proportional to qg=q`. We also note

that the viscosity of the gas is much smaller than that of

the liquid. As a result, sg can be eliminated from (2.5)

which, by implementing (2.7), yields

n � s` � n � rr � n� _m2

qg

: �2:8�

In this manner, the mean pressure of the drop is calcu-

lated relative to the mean pressure of the ambient gas.

Finally, (2.7) can be further simpli®ed by noting that the

ratio of the velocity of the liquid to that of the gas, at the

interface, is of the same order as qg=q`. Therefore, (2.7)

may be approximated as

wg � n � _m
qg

: �2:9�

With these simpli®cations, the coupling between the

two phases is now through the evaporated mass, _m, only.

In order to eliminate this coupling, we assume that the

time scale for changes in the velocity and temperature of

the gas is small compared to the time scale of the

evolution of the surface of the oscillating drop (we will

elaborate on the validity of this assumption in Section

3.1). Therefore, the gas phase may be considered quasi-

steady during the evolution of the drop surface. A study

of quasi-steady evaporation of deformed drops is pre-

sented in Section 3 where we demonstrate that the ¯ux of

evaporated mass can be modeled as a function of the

Fig. 1. Coordinate system and solution domain used in the

computations.
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local surface curvature. The evaporation model pro-

duced by the quasi-steady analysis is then implemented

for the investigation of drop oscillations in Part II.

The governing equations for both phases are nondi-

mensionalized using the initial radius of the nonper-

turbed spherical drop, r0, a characteristic time,

�q`r3
0=r�1=2

, and a normalized gas temperature h �
�Tg ÿ Tb�=�T1 ÿ Tb�

r � ua � 0; a � `; g �2:10�

Daua

Dt
� ma

m`

1

Re`
r � Ta; a � `; g �2:11�

Dgh
Dt
� mg

m`

1

Re`Prg

r2h; �2:12�

where Ta � ÿpaI� �rua � �rua�T� for Newtonian ¯uid

with pa now denoting the normalized pressure, and
Da

Dt � o
ot � ua � r is the total derivative operator. Here,

Re` � �1=m`��rr0=q`�1=2
is the Reynolds number based on

the liquid properties and Prg � qgmgCpg=kg is the gas

Prandtl number. Note that no energy equation is con-

sidered for the liquid phase as the drop is assumed to be

at its boiling temperature. Boundary conditions for each

phase are discussed later.

2.1. Methodology

The governing equations are solved in �r; z� coordi-

nates using a Galerkin ®nite element method with pen-

alty function formulation [19]. Here, the pressure is

eliminated from the set of unknown variables by ab-

sorbing the continuity equation into the momentum

equation. For that, the pressure is de®ned as

pa � ÿ!r � ua; �2:13�

where ! is a large number [O�109�] depending on the

viscosity and Reynolds number. Four-node bilinear

isoparametric elements are used to approximate the

velocity distribution over each element

ua�z; r; t� �
X4

i�1

uai�t�Ni�z; r�: �2:14�

h�z; r; t� �
X4

i�1

hi�t�Ni�z; r�: �2:15�

To obtain the ®nite element formulation, the mo-

mentum and energy equations are multiplied by the

shape function, Nj, and integration is carried over the

element volume. After the divergence theorem is in-

voked the following closed form ®nite element formu-

lation is obtained:

Z
X

m`
ma

Re`Nj
Daua

Dt

�
�rNT

j

� !�r � ua�I
h

� �rua � �rua�T�
i�

dX

�
Z

n
NjTa � n dn; �2:16�

Z
X

m`
mg

Re`PrgNj
Dgh
Dt

�
�rNj � rh

�
dX

�
Z

n
Njrh � n dn; �2:17�

where X and n indicate the volume and the surface of the

element, respectively.

3. Evaporation of deformed drops

In this section, the solution of Eqs. (2.10)±(2.12), with

a � g, is sought for the gas phase. The solution domain,

shown in Fig. 1, extends from the surface of the drop to

a distance H where the gas temperature can be consid-

ered uniform at T1. The boundary conditions for the

velocity ®eld are obtained using (2.6) and (2.9) on the

surface of the drop

ug � mg

m`

B
Re`Prg

oh
oz
; vg � mg

m`

B
Re`Prg

oh
or
; h � 0; �3:1�

and using conservation of mass at a distance H from the

center of the drop

ug �
_M

4pH 2
cos /; vg �

_M
4pH 2

sin /; h � 1: �3:2�

Here, B � Cpg�T1 ÿ Tb�=Lv is the transfer number,

and _M represents the total mass evaporated from the

surface of the drop per unit time. We consider axisym-

metric drops for which symmetry boundary conditions

are used along the symmetry axis

oug

or
� 0; vg � 0;

oh
or
� 0 at r � 0: �3:3�

For cases that the surface of the drop is deformed

with even spherical modes (see below), symmetry

boundary conditions are also implemented on the plane

of symmetry

ug � 0;
ovg

oz
� 0;

oh
oz
� 0 at z � 0: �3:4�

The surface of the drop, h�/�, is perturbed from its

spherical shape using spherical harmonics

h�/� � Rn�1� �nPn�cos /��; �3:5�
where Pn�cos /� is the Legendre polynomial of degree n,

�n the amplitude of the disturbance, and Rn is used to
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maintain the volume of the drop constant when �n is

varied

R2 � 35

35� 21�2
2 � 2�3

2

� �1=3

;

R3 � 7

7� 3�2
3

� �1=3

;

R4 � 3003

3003� 1001�2
4 � 54�3

4

� �1=3

;

R5 � 11

11� 3�2
5

� �1=3

:

�3:6�

An inspection of the formulation reveals that mg=m`
and Re` only a�ect the time scale and do not change the

long time values of evaporation rate. Since we are in-

terested in the steady state solution, in the following we

will only consider the e�ects of B, n, and �n. For all the

simulations, we use Prg � 1 which is a good approxi-

mation for most gases. To expedite the convergence, the

initial condition for each simulation is taken from the

analytical solution for quasi-steady evaporation of a

spherical drop at the same B. For each value of B, the

numerical solution is ®rst con®rmed by comparison of

the results obtained for a nonperturbed drop with the

analytical solution for evaporation of a spherical drop

[18]

vsp �
2

.
b; �3:7�

where subscript `sp' refers to spherical drop with non-

dimensional radius ., and

v � q`r
r0

� �ÿ1=2

_m;

b � 1

2
�q`r0r�ÿ1=2 kg

Cpg

� �
ln�1� B�:

�3:8�

The value of H for each simulation is chosen such

that boundary conditions (3.2) are satis®ed while the

tangential velocity (v/) and the temperature gradient

become su�ciently close to zero at distance H. The av-

erage value used for various cases is approximately

H � 90. Typically, 60 (uniform) and 20 (stretched) el-

ements were used in the circumferential and radial

directions, respectively, for even-mode cases.

Of particular interest in this work, is the variation of

the vapor mass ¯ux along the surface of the drop. Fig. 2

shows the parameter

w � vÿ vsp

vsp

; �3:9�

as a function of angle / at di�erent surface amplitudes

for B � 1 and n � 2; 3, and 4. The parameter w measures

the deviation of the mass ¯ux of the deformed drop from

Fig. 2. Variations of the normalized mass ¯ux with angle / at various amplitudes for (a) n � 2, (b) n � 3, and (c) n � 4.
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that of a spherical drop. It is observed that the local

values of w can be very signi®cant indicating changes in

the mass ¯ux as large as 70% (for �4 � 0:5). While the

change in the total evaporated mass (for the same case)

is only 9%, the large local variations of the mass ¯ux can

have signi®cant e�ects on the oscillations of an evap-

orating drop. In general, the magnitude of w increases

with the increase of the amplitude of the surface defor-

mation. However, it appears that the rate of increase of

the magnitude of w with � is larger near the plane of

symmetry (/ � p). The variation of w with / can be

explained by examining the isotherms near the surface of

the drop, as shown in Fig. 3, for a drop deformed in

second mode with �2 � 0:7. It is noted that the normal

distance between the isotherms varies with angle /. In

particular, for this second-mode case, the isotherms are

more apart near / � p and result in the decrease of the

mass ¯ux with respect to that of a spherical drop. The

variation of streamlines near the surface of the drop is

also shown in Fig. 3. The streamlines are formed per-

pendicularly to the isotherms and tend to align radially

away from the surface of the drop.

3.1. Evaporation model for small amplitudes

In the absence of a model for evaporation of de-

formed surfaces, Lian and Reitz [20] use a modi®ed form

of (3.7) to study the instability of evaporating liquid jets.

They postulate that the deformed surface may be locally

considered as the surface of a spherical drop having the

same curvature, K, as that of the deformed surface.

Therefore, v �Kb is used which for K � 2=. reduces

to (3.7) for a spherical drop. The results of our numer-

ical simulations presented in the form of variations of

the normalized mass ¯ux, w, with / in Fig. 2 also suggest

a correlation between the mass ¯ux and the local surface

curvature of the deformed drop.

Figure 4 shows a comparison between wsim �
�vÿ vsp�=vsp from the simulation results and wmod �
�Kbÿ vsp�=vsp based on the model discussed above

for n � 2 and 4, with B � 1 and � � 0:05. Here, the

local curvature of the surface is calculated numerically

using

K � ÿ h2 � 2h2
/ ÿ hh//

�h2
/ � h2�1:5 ÿ hÿ cot /h/

h�h2
/ � h2�0:5 ; �3:10�

where subscript shows derivative with respect to /. Al-

though large deviations are observed, the comparison in

Fig. 4 does suggest that a good agreement can be

achieved by implementing a coe�cient Fn (independent

of /) such that: wsim � Fnwmod. Then, substituting for

wsim and wmod, and solving for the mass ¯ux v, it is easy

to show that

v � Fn K

��
ÿ 2

.

�
� 2

.

�
b: �3:11�

Fig. 3. Isotherms and streamlines near the surface of the drop

for a case with �2 � 0:7 and B � 1.

Fig. 4. Comparison between the simulation results and pre-

dictions of a preliminary model for the normalized mass ¯ux as

a function of / for (a) n � 2 and (b) n � 4.
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A comparison between Figs. 4(a) and (b) shows that

the coe�cient Fn depends on the mode of oscillation n.

By inspection, we have managed to compile our simu-

lation results for the ®rst few modes into the following

relation for Fn:

Fn � 3n� 2

2�n�n� 1� � 2� : �3:12�

The discrete values of Fn are plotted in Fig. 5 versus

mode of oscillation. The solid symbols indicate the

modes of oscillations that have been simulated in this

study. The hollow symbols show the extrapolation of Fn

based on (3.12). The largest value, Fn � 0:5, belongs to

the second mode and Fn decreases monotonically with

the increase of n.

In order to assess the evaporation model (3.11), a

variety of cases have been simulated for � � 0:05. The

results of these simulations are presented in Figs. 6 (for

n � 2, 3, 4, and 5) and 7 (for n � 6, 7, and 8) for

B � 0:1, 0.5, 1, and 2. It must be mentioned that no

volume correction factor (Rn, Eq. (3.6)) has been used

for cases shown in Fig. 7. However, this does not have

any signi®cant e�ect on w as Rn becomes very close to

unity for higher modes at � � 0:05. It is clearly observed

in Figs. 6 and 7 that w may be considered independent of

B and that the model is capable of predicting the vari-

ations of w with / accurately. It is also interesting to

note that the agreement between the model prediction

and simulation results does not diminish with the

Fig. 5. Variations of the coe�cient Fn with the mode of surface

deformation. The solid symbols correspond to the cases simu-

lated and the hollow symbols show extrapolated values.

Fig. 6. Comparison between the model prediction and simulation results for the normalized mass ¯ux at di�erent values of B. (a) n � 2,

(b) n � 3, (c) n � 4, and (d) n � 5.
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increase of the mode of oscillation. Therefore, although

the performance of the model has not been assessed for

n > 8, we feel that higher modes could also be well

represented by (3.11).

More inspection of the results indicates that an im-

portant parameter a�ecting the performance of the

model is the amplitude of the surface deformation. In

Fig. 8 comparisons are provided between the model

prediction and simulation results for w at three di�erent

amplitudes �4 � 0:05, 0.1, and 0.2. The ®gure suggests

that the model performance deteriorates with the in-

crease of the amplitude, however, a reasonable agree-

ment is observed for up to �4 � 0:1. The results for other

modes (not shown) also indicate a similar trend. In the

study of oscillations of drops in Part II, we will only

consider � � 0:05 for which the model describes the local

rate of evaporation accurately.

It was argued in Section 2 that the study of the gas

phase could be decoupled from the e�ects of the liquid

phase provided that the evolution of the velocity and

temperature ®elds of the gas phase is fast compared to

the motion of the drop surface. In order to provide an

assessment of the validity of this assumption, we con-

sider the transient behavior of the gas phase. It is not

possible to exactly create the same transient conditions

as those in the real oscillating drop. However, as a

reasonable approximation for a drop oscillating in

fourth mode with initial amplitude of 0.05, we perturb

the surface of the drop with �4 � 0:05 and plot the

evolution of w in time in Fig. 9. The initial conditions for

velocity and temperature in this transient problem are

taken from the numerical simulation for a spherical drop

at the same transfer number B � 1. Fig. 9 shows that the

solution at t � 0:06 closely approximates the steady state

Fig. 8. Comparison between the model prediction and simu-

lation results at B � 1 for a fourth-mode surface deformation at

various amplitudes.

Fig. 7. Comparison between the model prediction and simulation results for the normalized mass ¯ux at di�erent values of B. (a) n � 6,

(b) n � 7, and (c) n � 8.
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solution. This time is to be compared to �0:19 (see Part

II) which is the time required to change the amplitude of

oscillation by 0:05 in the fourth mode oscillation of a

drop with � � 0:05. Although this simulation does not

exactly replicate the conditions in the oscillating drop, it

does provide some support for the assumption of quasi-

steadiness. More importantly, Fig. 9 shows that the

variation of w with / is similar for di�erent times.

Therefore, the transient solution of w at various times

may be related to its steady state solution by applying a

coe�cient similar to Fn. Consequently, the model pre-

sented in this section is capable of representing the

transient behavior by applying a modi®cation to Fn.

4. Conclusion

Numerical simulations are used to investigate the

modi®cations in the rate of evaporation of a drop due to

its surface deformation. The preheat period is not con-

sidered and the drop is assumed to be at its boiling

temperature. The surrounding gas, except for the region

close to the drop, is also at a uniform temperature and

its density is much smaller than the liquid density. Under

these assumptions, it is shown that the gas and the liquid

phases can be studied separately. The coupling between

the two phases is through an evaporation model which is

derived from the study of the gas phase and is then

implemented to analyze the oscillations in the liquid

phase.

In the analysis of the gas phase, the numerical solu-

tion to the steady state Navier±Stokes and energy

equations is sought. The surface of the drop is perturbed

with various spherical modes up to the eighth, the am-

plitude of disturbance is varied from small values up to

0.7, and a wide range of variation is considered for the

transfer number. The results show that the mass ¯ux

varies along the surface of the deformed drop, due to

modi®cations of the isotherms near the interface. The

results for various transfer numbers become nearly

identical when the modi®cations in the mass ¯ux for

each transfer number are normalized with the mass ¯ux

of the respective spherical drop (cf. Figs. 6 and 7). The

variations of the mass ¯ux, for small amplitudes, have

been modeled as a function of surface curvature. The

model is valid for surface amplitudes up to 10% of the

radius of the drop and agrees very well with numerical

results for spherical modes n � 2 to 8.
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